Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 307(Pt 1): 135701, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35842049

RESUMO

This study demonstrates the enantioselective removal dynamics and mechanisms of the chiral herbicide metolachlor in a hydroponic system of Phragmites australis. It presents the first work to elucidate plant-microbial driven enantioselective degradation processes of chiral chemicals. The results showed a degradation efficiency of up to 95.07 ± 2.81% in the hydroponic system driven by a notably high degradation rate constant of 0.086 d-1. P. australis was demonstrated to rapidly increase the contribution of biodegradation pathways in the hydroponic system to 82.21 ± 4.81% within 4 d with an enantiomeric fraction (EF) drop to 0.26 ± 0.02 to favour the enantioselective degradation of S-Metolachlor (kS-Metolachlor = 0.568 d-1 and kR-Metolachlor = 0.147 d-1). Comparatively, the biodegradation pathways in the control constituted less than 25%, with an EF value of circa 0.5. However, the enantioselective biodegradation pathways exhibited complete reversal after about 4 d to favour R-Metolachlor. Plants promoted the degradation of R-Metolachlor, evidenced by an increase in EF to 0.59 ± 0.03. Nonetheless, metolachlor showed an inhibitory effect on plants reflected by the reduction of plant growth rate, chlorophyll content, and electron transport rate to -7.85 ± 1.52%, 1.33 ± 0.43 mg g-1, 4.03 ± 1.33 µmol (m2 s)-1, respectively. However, rhizosphere microorganisms aided plants to catalyze excessive reactive oxygen species production by the antioxidant enzymes to protect plants from oxidative damage and restore their physiological activities. High-throughput analysis of microbial communities demonstrated the enrichment of Massilia (40.63%) and Pseudomonas (8.16%) in the initial stage to promote the rapid degradation of S-Metolachlor. By contrast, the proliferation of Brevundimonas (32.29%) and Pseudarthrobacter (11.03%) in the terminal stage was closely associated with the degradation of R-Metolachlor. Moreover, as symbiotic bacteria of plants, these bacteria aided plants protection from reactive oxygen damages and promoted the recovery of plant metabolic functions and photosynthesis. Overall, these results demonstrate biodegradation mediated by plant-microbe mechanisms as the main driver for the enantioselective degradation of metolachlor in hydroponic systems.


Assuntos
Herbicidas , Acetamidas , Antioxidantes , Biodegradação Ambiental , Clorofila , Herbicidas/química , Hidroponia , Oxigênio , Plantas/metabolismo , Espécies Reativas de Oxigênio
2.
Bioresour Technol ; 354: 127217, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35470002

RESUMO

This study demonstrates effects of sulfamethoxazole (SMX) on carbon-nitrogen transformation pathways and microbial community and metabolic function response mechanisms in constructed wetlands. Findings showed co-metabolism of SMX with organic pollutants resulted in high removal of 98.92 ± 0.25% at influent concentrations of 103.08 ± 13.70 µg/L (SMX) and 601.92 ± 22.69 mg/L (COD), and 2 d hydraulic retention. Microbial community, co-occurrence networks, and metabolic pathways analyses showed SMX promoted enrichment of COD and SMX co-metabolizing bacteria like Mycobacterium, Chryseobacterium and Comamonas. Relative abundances of co-metabolic pathways like Amino acid, carbohydrate, and Xenobiotics biodegradation and metabolism were elevated. SMX also increased relative abundances of the resistant heterotrophic nitrification-aerobic denitrification bacteria Paracoccus and Comamonas and functional genes nxrA, narI, norC and nosZ involved in simultaneous heterotrophic nitrification-aerobic denitrification. Consequently, denitrification rate increased by 1.30 mg/(L∙d). However, insufficient reaction substrate and accumulation of 15.29 ± 2.30 mg/L NO3--N exacerbate inhibitory effects of SMX on expression of some denitrification genes.


Assuntos
Microbiota , Áreas Alagadas , Antibacterianos , Bactérias/genética , Carbono , Desnitrificação , Nitrificação , Nitrogênio/análise , Sulfametoxazol , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...